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LETI'ER TO THE EDITOR 

Bounds OD steady states for a non-systemically autocatalysed 
reactiondiffusion system 

S R Inamdar and B D Kulkamit 
National Chemical Laboratory, Pune-411008, India 

Received 7 February 1990 

Abstract. Bounds on parameter values that lead to different types of solutions for a 
non-systemically autocatalysed reaction-diffusion system are derived and show the 
existence of a critical concentration beyond which the stability properties undergo change. 
Additionally, bifurcating solutions at the zero eigenvalue are obtained. 

This letter considers an alternative form of autocatalysis where the product formed 
affects its own rate through interactions with the rate constant as against the normal 
autocatalysis where the rate is affected directly by the concentration of the product. 
This form of the rate has wide applications in several biochemical systems as well as 
in explaining the phenomena in diverse chemical and combustion-type reactions (Ravi 
Kumar et a1 1984). The exponential autocatalysis has received acceptance as a general 
model for a class of reaction-diffusion systems (Bar-Eli 1984a, b, c, 1985) and results 
obtained by using the conventional autocatalysis, such as the one used in Brusselator- 
type models, compare well with this model system. The exponential autocatalysis has 
revealed the existence of multiplicity and oscillatory behaviour under homogeneous 
conditions (Ravi Kumar et af 1984). This letter begins with this reaction scheme to 
derive bounds on the values of the parameters that lead to the existence of different 
types of solutions in presence of diffusion gradients. 

More specifically the conditions under which the governing system would have 
real eigenvalues with positive real part, the conditions when eigenvalues are complex 
and the conditions when the complex eigenvalues have real positive parts have been 
derived. In addition to this, bifucating solutions for a simple case of zero eigenvalue 
are obtained. The mathematical aspects of reacting and difising systems are well 
documented (see, for example, Sattinger 1973, Auchmuty and Nicolis 1975a, b, Fife 
1979, Kuramoto 1984), but the present scheme provides an example where the functions 
involved are transcendental in nature. 

The reaction-difision system is represented by following coupled nonlinear para- 
bolic partial differential equations: 

ax a2x 
- = D, - + xo - x - Du,x exp( a y )  
at  ar2 

_- a2Y ay - D2 T +  yo - y + Da,x e x ~ (  a y )  - Dag. 
at ar 
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At steady state, the values of x and y,  denoted as x, and B respectively, are given by 

Defining deviations from steady state as U and U 

x = u + x ,  Y = u + e  (3) 
and with linearisation of the nonlinear term exp(au) = (1 + au), equation (1 )  can be 
rewritten as 

dU a2u 
- -D , - - ( l+Da ,  eDL’)u-(aDuIxSeOL’u)-aDul eDLeuu 
a t  ar2 

au a% 
-= D 2 i + D a l  eaeu+(aDa,x,e“@ - ( l+Da,) )u+aDa,  en*uu. a t  a r  (46) 

The eigenvalue problem for equations ( 4 a )  and (4b) can be formulated as: 

D,u”-(l  + D U ,  e~re)u-aDa,x ,eaeu= A U  ( s a )  

D,u”+ Da, eaeu + (aDa,xs  ea’ - (1 + Da,))u = Au. ( 5 6 )  

Using equations ( 5 a )  and ( 5 b ) ,  and defining constants k , ,  k 2 ,  k , ,  k ,  for the sake 
of simplification as, 

k ,  = -(1+ Da, ea’) k2 = -aDaIx,  eoe ( 6 )  

k, = ax,Da, ea’ - (1 + Da,) (7)  k,  = Da, ea@ 

the solution to the eigenvalue problem can be given as 

From equations (5)-(8) we obtain 

e:+ c: = 2 

c2 - m 2 n 2 D ,  + k ,  
fj =-= 

m 
C1 k2 

giving us c ,  and c2 as 

as, 
c -- 

a 
c -- ’-m ‘-m 

The system of linear equations possesses the following characteristic equation: 

A’+@,,, - am)h  + ax,(Da, ea’)* - amp, = 0. (12) 

(13) 
Analysis of equation (13) helps us to fix the following conditions for different stability 
behaviour of steady state solutions. 

The eigenvalues are the roots of the characteristic equation given by 

A * =;{ (a ,  - P m )  * [ ( a m  + Pm)’ -4ax,(Da, eas)2]”2}. 

( 1 )  A +  has positive real part whenever 

m4v4D,D2 + m 2 r 2 [ D , (  1 + Da2) + D,] + (1  + Da,) ( + Da2) In { 
Da, [ m 2 d (  ax,DI - DJ + ( a x ,  - Da, - 1 )] a Yo’ (x, - xo) + 
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(2) The eigenvalues are complex whenever the discriminant in equation ( 1 2 )  obeys 
the condition A<O.  The resulting inequality is 

( 1 + D U ~ )  { ( a x ,  + 1 )( 1 + Du, - 8) - (I, 
a Du,(ax , - l )*  ( x s  - xo) + 

(1 + Da*) In(  (axs+ 1 ) ( 1 +  Da*- 6 ) +  (I, 
a Da,(ax,-  1)2  < (x, - xo) + 

where 

(I, = {4[ ax,( 6 - 1)* - D u ~ (  S - 1 ) ( (Y*x;? + 1 ) + (YX,DU :] + (ax, - l)*}l” 

and 

6 = 1 + m2.n2(D, - D*). 

(3) A complex value will have positive real part provided 

( l+Da,) ln{ , ‘+DU,+l)  
a Da, ( a x ,  - 1 )  Yo’ ( x ,  - xo) + 

Combining the two inequalities given by equations (15)  and (18), one sees that 

(1 + Da*) 6 ’+  Da*+ 1 ] 
a Da,(ax,-  1 )  ( x ,  - xo) + 

1. ( 1  + Da*) { (ax,+ 1)(1+ Daz - S )  - l+b 

a Da,(ax,-  1 ) ,  <Yo< (x, - xo) + 

The equations ( 1  5) and (16) can be rewritten as: 

m 4 . n 4 ( ~ ,  - ~ , ) ~ + 2 m ~ . n ~ { ( ~ ,  - D,)[Du,  eaH(axs+ 1 )  - DU,]) 

+ { ( ax, - 1 ) * ( Da I ems )* - 2 Da, ( a x ,  + 1 ) Da I ea’ + Da - 1 } = 0. (21) 

Now, to obtain the critical value of the wavenumber m, or we shall minimise the 
function in equation (14). Iff = m2&, then we have the following quadratic equation: 

f2{D1D2(aXsDI - D*))+f{2D,D2(ax,- Daz- 1 ) )  

+ ( a x , -  Daz- 1 ) [ ( 1 +  Da,)D,  + 0 2 3  - (1 + Da*)(ax,D, - D2) = 0 (22) 

giving 

where 

q = [ [ D , D * ( a x ,  - Da, - 1)-j2- (ax,D, - D*) 

x {DID, (  a x ,  - D u ~  - 1 ) [ (  1 + Da2)DI + 0 2 1  + f (  1 + D u ~ ) } ] ” ’ .  ( 2 3 b )  
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From equations (14), (22 )  and (23) ,  we obtain the expression for critical value of 
bifurcating parameter as: 

From equation ( 1 8 ) ,  one gets 

1 + .rr2(D, + D 2 ) + ( l  + Du,) ( + Du2) In{ 
(ax,  - l)Dul Yo, = (xs - xo) + a 

Then combining inequalities (20) and (25 ) ,  

D2 < 2( Du2+ 2+ .rr2D,) 

-{4[aX,( 60- - Da2(6, - l)(a2X:+ 1 )  ffX,DU:] (ax,  - 1)2}"2 ( 2 6 )  

where 

60= 1 + T 2 ( D 1  - D2). 

In particular, if D,  = D2 = 0, equation (26) becomes 

2(Du2+2) -[4ax,Du:+(axs- 1)211'2 
1 - 2 n 2  

D <  

For a simple zero eigenvalue, the eigenfunction has a condition for the wavenumber as 

ampm = ax,( Du, e"')'. 

This produces the following quadratic equation: 

m2 
m 4 D , D 2 + ~ { D l [ a x , D u ,  eue-(1+Du2)]-D2(1+Du, cue)} 

.rr 

1 
+ T { a x , D u ,  77 eue-(1+Du2)(l+Du1 e"')}=O (29) 

or for yo, we can rewrite equation (29) using the critical value of m as 
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In a similar fashion, we can substitute the value of m, into equation (30), and obtain 
another relationship, which confirms that yo = 0 can never be a bifurcation point. 

Now for the quadratic equation (29) in m2,  there exist two positive integers m ,  
and m, such that, 

D,D, (m2-m:) (m2-m:)=0 .  

When m, is an integer solution, this yields a condition, 

(1 + Da2) - ax,DaI ea' 1 + Da, ea' 
v =  + - m: 

D2 Dl 

which is not a square. 
For the normalised eigenvector given in equation (8), using equations (9)-(ll), the 

constants cl and c2 can be computed. Similarly, putting the critical value of wavenumber 
m,,  we can see that 

c2/ c, .= 0. 
The adjoint L:,, of Lv, is given as 

with the condition 

u = u = o .  (34) 
The eigenvalues of the adjoint operator L;" are the same as that of Lv,, and the 
eigenfunction for simple zero eigenvalue is given as 

Using equations (5) and (35) we obtain 

d : + d : = 2  

d2 
d ,  -m2n2D2+ k3 

k2 
E m  =-= 

which produces expressions for d ,  and d ,  as 

d ,  d2 = - =- d2 
" 

(37) 

This letter presents the analysis of the steady state solutions of the system of 
nonlinear equations which describe an exponentially autocatalysed reaction with 
diffusion. The stability of steady state solutions of the system has been derived using 
a linear stability analysis. In particular, criteria in terms of the bounds on the values 
of a parameter appearing in the equations are developed. The analysis reveals the 
existence of the critical value yo, of a component y beyond which the uniform steady 
state solutions undergo a change in stability properties. It is possible to have additional 
steady state solutions of the system of equations, which may be stable for the various 
ranges of yo. These solutions, however, are inhomogeneous and possess several well 
defined maxima or minima. The results here form a basis for obtaining the so-called 
dissipative structures. 
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